1 Introduction

Stepwise regression is a widely employed data-mining technique aimed at identifying a valuable subset of predictors for utilization in a multiple regression model. To facilitate this process, we have developed the R package StepReg. Depending on the nature of the response variable, StepReg facilitates users in conducting linear regression for continuous outcomes, logistic regression for binary outcomes, Cox regression for time-to-event outcomes, and Poisson regression for count outcomes, incorporating popular selection criteria. It provides a versatile set of stop rules available in forward selection, backward elimination, both-direction, and best subset methods.

Here, we applied the StepReg package to four well-established and diverse datasets—mtcars, remission, lung, and CreditCard—utilizing distinct parameters across various regression scenarios. These datasets provide robust test cases for showcasing the capabilities and versatility of the StepReg package in real-world applications. Through practical demonstrations, we illustrated the application of linear stepwise regression for continuous outcomes, logistic stepwise regression for binary outcomes, Cox stepwise regression for time-to-event outcomes, and Poisson stepwise regression for count outcomes. These examples offer users valuable insights into the effective utilization of StepReg for variable selection in different regression scenarios, providing a comprehensive guide for those seeking proficiency in incorporating StepReg into their analytical toolkit.

A breif introduction for four datasets is descripted as below,

  • mtcars: the mtcars dataset is a classic automotive dataset that provides information on various car models and their performance attributes. With 32 observations and 11 variables, it includes details such as miles per gallon (mpg), horsepower, and the number of cylinders.

  • remission: the remission dataset is relevant in the context of medical research, specifically in oncology. It captures data related to the remission status of leukemia patients. The dataset includes variables such as cellularity of the marrow clot section, the highest temperature before the start of treatment, and remission status (1 for remission and 0 for non-remission).

  • lung: the lung dataset is a dataset in the survival analysis domain, containing information related to the survival times of 228 patients with advanced lung cancer. It includes variables such as the patient’s age, the type of treatment received, and survival status.

  • CreditCard: the CreditCard dataset is associated with credit risk analysis and financial research. It contains information about credit card transactions, including details such as the amount spent, credit limit, and payment status.

2 StepReg Output

A list containing multiple tables will be returned. Names and descriptions of each table are outlined as follows:

  • Table 1. Summary of Parameters: This table presents the parameters utilized in stepwise regression along with their default or user-specified values.

  • Table 2. Variables and Types: This table outlines the variables and their respective types utilized in the dataset.

  • Table names prefixed with Table. Selection Process: This table details overview of the variable selection process. Variables are selected based on information criteria rules, such as AIC, BIC, SBC, IC(1), HQ, etc., where lower values indicate better model fit. The significance levels include SLE for the entry of variables in forward selection and SLS for staying in backward elimination. For Rsq or adjusted R-squared, higher values indicate a better model fit.

  • Tabel names prefixed with Table. Parameter Estimates: This table provides summary information for the optimal models.

3 Demo

This section provides 9 examples utilizing distinct parameters across various regression scenarios with the above 4 datasets.

3.1 linear stepwise regression with mtcars

Example1: In this analysis, we used mpg as the response variable, with all other variables serving as predictors, employing a strategy of forward and a metric of AIC for linear stepwise regression. The analysis involved enforcing disp and cyl to be included in all models.

    library(StepReg)
    data(mtcars)
    formula <- mpg ~ .
    exam1 <- stepwise(formula = formula,
                      data = mtcars,
                      type = "linear",
                      include = c("disp","cyl"),
                      strategy = "forward",
                      metric = "AIC")
    exam1
## Table 1. Summary of Parameters            
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##            Parameter              Value   
## ——————————————————————————————————————————
## included variable               disp cyl   
## strategy                        forward    
## metric                          AIC        
## tolerance of multicollinearity  1e-07      
## multicollinearity variable      NULL       
## intercept                       1          
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 2. Type of Variables                    
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  Variable type  Variable name  Variable class 
## ——————————————————————————————————————————————
## Dependent      mpg            numeric          
## Independent    cyl            numeric          
## Independent    disp           numeric          
## Independent    hp             numeric          
## Independent    drat           numeric          
## Independent    wt             numeric          
## Independent    qsec           numeric          
## Independent    vs             numeric          
## Independent    am             numeric          
## Independent    gear           numeric          
## Independent    carb           numeric          
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 3. Selection Process under AIC                                                 
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  Step  EnteredEffect  RemovedEffect  NumberEffectIn  NumberParmsIn        AIC        
## —————————————————————————————————————————————————————————————————————————————————————
## 0     1                             0               1              149.943449990894   
## 0     disp cyl                      -2              3              108.33357089067    
## 1     wt                            3               4              98.7462938182664   
## 2     hp                            4               5              97.5255371708581   
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 4. Parameter Estimates for mpg under AIC                                                
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##   Variable         Estimate           Std. Error           t value             Pr(>|t|)       
## ——————————————————————————————————————————————————————————————————————————————————————————————
## (Intercept)  40.8285367422432    2.75746792810596    14.8065318642844   1.76140221350856e-14   
## disp         0.0115992393009777  0.0117268091002486  0.989121525030348  0.331385561864358      
## cyl          -1.29331972351378   0.655876754872712   -1.97189443581482  0.0589468066844992     
## wt           -3.85390352303833   1.01547364107822    -3.79517829625422  0.000758947039357617   
## hp           -0.020538376368824  0.0121467704321512  -1.69085078898512  0.102379131471602      
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗

Visulization of the selection process using information criteron AIC.

    plot(exam1)

Example2: In this illustration, we maintained mpg as the response variable, while designating the other variables as predictors. The chosen strategy was bidirectional with AIC, AICc, BIC,HQ, HQc, SBC, and SL as the stopping criterion, and the significance levels for entry (sle) and stay (sls) were both set to 0.05 parallelly. The analysis involved removing intercept from the model. The specific characteristics of the data and the goals of the analysis in each subject area require users to choose different stepwise regression method and selection criteria. Users can compare all metics through the output list or the plots.

    formula <- mpg ~ . + 0
    exam2 <- stepwise(formula = formula,
                      data = mtcars,
                      type = "linear",
                      strategy = "bidirection",
                      metric = c("AIC","SBC","SL","AICc","BIC","HQ","HQc"),
                      sle = 0.05,
                      sls = 0.05)
    exam2
## Table 1. Summary of Parameters                                          
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##            Parameter                             Value                  
## ————————————————————————————————————————————————————————————————————————
## included variable               NULL                                     
## strategy                        bidirection                              
## metric                          AIC & SBC & SL & AICc & BIC & HQ & HQc   
## entry significance level (sle)  0.05                                     
## stay significance level (sls)   0.05                                     
## test method                     F                                        
## tolerance of multicollinearity  1e-07                                    
## multicollinearity variable      NULL                                     
## intercept                       0                                        
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 2. Type of Variables                    
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  Variable type  Variable name  Variable class 
## ——————————————————————————————————————————————
## Dependent      mpg            numeric          
## Independent    cyl            numeric          
## Independent    disp           numeric          
## Independent    hp             numeric          
## Independent    drat           numeric          
## Independent    wt             numeric          
## Independent    qsec           numeric          
## Independent    vs             numeric          
## Independent    am             numeric          
## Independent    gear           numeric          
## Independent    carb           numeric          
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 3. Selection Process under AIC                                                 
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  Step  EnteredEffect  RemovedEffect  NumberEffectIn  NumberParmsIn        AIC        
## —————————————————————————————————————————————————————————————————————————————————————
## 0     0                             0               0              Inf                
## 1     drat                          1               1              131.940615397799   
## 2     carb                          2               2              112.874977003721   
## 3     gear                          3               3              105.767914676203   
## 4     hp                            4               4              105.399654906399   
## 5     qsec                          5               5              105.277861812131   
## 6     wt                            6               6              100.437613232709   
## 7                    hp             5               5              98.4440186423183   
## 8     am                            6               6              97.8009315992234   
## 9                    gear           5               5              96.5751826224886   
## 10                   carb           4               4              96.0485980614551   
## 11                   drat           3               3              95.418690850739    
## 12    disp                          4               4              95.3954043177414   
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 4. Selection Process under SBC                                                 
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  Step  EnteredEffect  RemovedEffect  NumberEffectIn  NumberParmsIn        SBC        
## —————————————————————————————————————————————————————————————————————————————————————
## 0     0                             0               0              Inf                
## 1     drat                          1               1              99.4063513005992   
## 2     carb                          2               2              81.8064488093206   
## 3     gear                          3               3              76.1651223846019   
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 5. Selection Process under SL                                                      
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  Step  EnteredEffect  RemovedEffect  NumberEffectIn  NumberParmsIn           SL          
## —————————————————————————————————————————————————————————————————————————————————————————
## 0     0                             0               0              1                      
## 1     drat                          1               1              2.44913223058495e-22   
## 2     carb                          2               2              1.03775546495333e-05   
## 3     gear                          3               3              0.00438861027007104    
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 6. Selection Process under AICc                                                
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  Step  EnteredEffect  RemovedEffect  NumberEffectIn  NumberParmsIn        AICc       
## —————————————————————————————————————————————————————————————————————————————————————
## 0     0                             0               0              Inf                
## 1     drat                          1               1              132.354408501248   
## 2     carb                          2               2              113.732119860864   
## 3     gear                          3               3              107.249396157684   
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 7. Selection Process under BIC                                                 
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  Step  EnteredEffect  RemovedEffect  NumberEffectIn  NumberParmsIn        BIC        
## —————————————————————————————————————————————————————————————————————————————————————
## 0     0                             0               0              Inf                
## 1     drat                          1               1              97.7553842586695   
## 2     carb                          2               2              79.2794817092699   
## 3     gear                          3               3              72.9946131788242   
## 4     hp                            4               4              72.9415244192211   
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 8. Selection Process under HQ                                                  
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  Step  EnteredEffect  RemovedEffect  NumberEffectIn  NumberParmsIn         HQ        
## —————————————————————————————————————————————————————————————————————————————————————
## 0     0                             0               0              Inf                
## 1     drat                          1               1              96.0182982097902   
## 2     carb                          2               2              75.0303426277027   
## 3     gear                          3               3              66.0009631121751   
## 4     hp                            4               4              63.7103861543619   
## 5     qsec                          5               5              61.6662758720848   
## 6     wt                            6               6              54.9037101046532   
## 7                    hp             5               5              54.8324327022722   
## 8     am                            6               6              52.2670284711681   
## 9     disp                          7               7              51.5596073775111   
## 10    hp                            8               8              50.5198981811353   
## 11                   carb           7               7              50.5007045958875   
## 12    cyl                           8               8              50.3437098642926   
## 13    carb                          9               9              50.2608086854785   
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 9. Selection Process under HQc                                                 
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  Step  EnteredEffect  RemovedEffect  NumberEffectIn  NumberParmsIn        HQc        
## —————————————————————————————————————————————————————————————————————————————————————
## 0     0                             0               0              Inf                
## 1     drat                          1               1              96.0263343627548   
## 2     carb                          2               2              75.052537716843    
## 3     gear                          3               3              66.0441202299477   
## 4     hp                            4               4              63.7820933654303   
## 5     qsec                          5               5              61.7750318088718   
## 6     wt                            6               6              55.0590757286348   
## 7                    hp             5               5              54.9411886390593   
## 8     am                            6               6              52.4223940951496   
## 9     disp                          7               7              51.7723907320945   
## 10    hp                            8               8              50.802381133829    
## 11                   carb           7               7              50.713487950471    
## 12    cyl                           8               8              50.6261928169863   
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 10. Parameter Estimates for mpg under AIC                                            
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  Variable       Estimate           Std. Error           t value             Pr(>|t|)       
## ———————————————————————————————————————————————————————————————————————————————————————————
## qsec      1.70550996283541    0.127485704584404   13.3780486870687   1.09964868080962e-13   
## wt        -4.61279456246674   1.15817323630342    -3.98281916545536  0.000440008628764359   
## am        4.18085430467977    1.01361607335742    4.12469219320039   0.000300527233592535   
## disp      0.0120200576653963  0.0088914542638529  1.35186633240215   0.187238258962162      
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 11. Parameter Estimates for mpg under SBC                                          
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  Variable      Estimate          Std. Error           t value             Pr(>|t|)       
## —————————————————————————————————————————————————————————————————————————————————————————
## drat      3.85142334610757   1.0678868653112    3.6065836852345    0.00115059878350687    
## carb      -2.36055514388328  0.350142761922923  -6.74169339077442  2.12967212881877e-07   
## gear      3.4883542511301    1.12895206584177   3.08990466174409   0.00438861027007103    
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 12. Parameter Estimates for mpg under SL                                           
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  Variable      Estimate          Std. Error           t value             Pr(>|t|)       
## —————————————————————————————————————————————————————————————————————————————————————————
## drat      3.85142334610757   1.0678868653112    3.6065836852345    0.00115059878350687    
## carb      -2.36055514388328  0.350142761922923  -6.74169339077442  2.12967212881877e-07   
## gear      3.4883542511301    1.12895206584177   3.08990466174409   0.00438861027007103    
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 13. Parameter Estimates for mpg under AICc                                         
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  Variable      Estimate          Std. Error           t value             Pr(>|t|)       
## —————————————————————————————————————————————————————————————————————————————————————————
## drat      3.85142334610757   1.0678868653112    3.6065836852345    0.00115059878350687    
## carb      -2.36055514388328  0.350142761922923  -6.74169339077442  2.12967212881877e-07   
## gear      3.4883542511301    1.12895206584177   3.08990466174409   0.00438861027007103    
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 14. Parameter Estimates for mpg under BIC                                             
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  Variable       Estimate            Std. Error           t value             Pr(>|t|)       
## ————————————————————————————————————————————————————————————————————————————————————————————
## drat      4.30273288409265     1.09158280873171    3.94173749318379   0.000491150652824566   
## carb      -1.73804836219828    0.54597600366577    -3.18337866596471  0.00355127557199684    
## gear      3.17367474781416     1.12779616721381    2.81404994987227   0.00885014913869611    
## hp        -0.0155479574747606  0.0106015597450293  -1.46657264107297  0.153634601937481      
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 15. Parameter Estimates for mpg under HQ                                              
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  Variable       Estimate            Std. Error           t value             Pr(>|t|)       
## ————————————————————————————————————————————————————————————————————————————————————————————
## drat      1.24018628116636     1.43081088945576    0.866771626009983   0.395019989028695     
## gear      1.05507041373944     1.31730971553748    0.800928135042981   0.431369721203034     
## qsec      1.21092335916019     0.39825927287781    3.0405402752084     0.00580910211687029   
## wt        -3.8393173477773     1.81635802262831    -2.11374481239207   0.0455922405971267    
## am        2.78900560523413     1.87631320367996    1.48642859825542    0.15074627783938      
## disp      0.013377487347384    0.0171483102637304  0.780105278108835   0.443283496072846     
## hp        -0.0200206683398262  0.0202056393976394  -0.990845572655583  0.332071276534613     
## cyl       0.314427335966453    0.637410972654929   0.493288238601867   0.626486125552571     
## carb      -0.269382366878572   0.791924966403595   -0.340161477800012  0.736822040562188     
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 16. Parameter Estimates for mpg under HQc                                             
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  Variable       Estimate            Std. Error           t value             Pr(>|t|)       
## ————————————————————————————————————————————————————————————————————————————————————————————
## drat      1.15464081893128     1.38234393696422    0.835277522515128  0.411799846499336      
## gear      0.86861885215473     1.17558240530996    0.738883848747045  0.467142793848725      
## qsec      1.30385655642974     0.28438801586838    4.58478024275534   0.000119371208464951   
## wt        -4.28678423131556    1.22920122659441    -3.48745521772087  0.00190040875483783    
## am        2.83676935913337     1.83625846165786    1.54486387312394   0.135464286600943      
## disp      0.0173369535398226   0.0123585220697692  1.40283388595724   0.173471044902963      
## hp        -0.0236106906721794  0.0169099008757928  -1.39626428597101  0.175416642765162      
## cyl       0.25167003723096     0.598781514963363   0.420303618167569  0.678003000841066      
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗

Visulization of the selection process using bidirection strategy under information criteron AIC, AICc, BIC,HQ, HQc, SBC, and SL with sle=0.05 and sls=0.05.

    plot(exam2)

Example3: In this multivariable multiple stepwise regression, we employed mpg and drat as response with cyl, disp, hp, wt, vs and am serving as predictors. The variable wt was enforced to be included in all models. The analysis involved the subset strategy for variable selection, with AIC and AICc as the criteria individually.

    formula <- cbind(mpg,drat) ~ cyl + disp + hp + wt + vs + am
    exam3 <- stepwise(formula = formula,
                      data = mtcars,
                      type = "linear",
                      include = 'wt',
                      strategy = "subset",
                      metric = c("AIC","AICc"),
                      best_n = 3)
    exam3
## Table 1. Summary of Parameters              
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##            Parameter               Value    
## ————————————————————————————————————————————
## included variable               wt           
## strategy                        subset       
## metric                          AIC & AICc   
## tolerance of multicollinearity  1e-07        
## multicollinearity variable      NULL         
## intercept                       1            
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 2. Type of Variables                       
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  Variable type   Variable name    Variable class 
## —————————————————————————————————————————————————
## Dependent      cbind(mpg, drat)  nmatrix.2        
## Independent    cyl               numeric          
## Independent    disp              numeric          
## Independent    hp                numeric          
## Independent    wt                numeric          
## Independent    vs                numeric          
## Independent    am                numeric          
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 3. Selection Process under AIC                         
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  NumberOfVariables        AIC            VariablesInModel    
## —————————————————————————————————————————————————————————————
## 2                  161.304784331389  1 wt                     
## 3                  150.7504611172    1 wt cyl                 
## 3                  153.019337447204  1 wt hp                  
## 3                  158.369641697526  1 wt vs                  
## 4                  146.595187612804  1 wt cyl am              
## 4                  147.017463011528  1 wt cyl hp              
## 4                  148.411791388542  1 wt hp am               
## 5                  145.725338025984  1 wt cyl hp am           
## 5                  148.951593685218  1 wt hp vs am            
## 5                  149.437618782264  1 wt cyl disp hp         
## 6                  148.135750495875  1 wt cyl disp hp am      
## 6                  149.129861532524  1 wt cyl hp vs am        
## 6                  150.642710344858  1 wt disp hp vs am       
## 7                  151.290651094496  1 wt cyl disp hp vs am   
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 4. Selection Process under AICc                        
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  NumberOfVariables        AICc           VariablesInModel    
## —————————————————————————————————————————————————————————————
## 2                  195.897376923981  1 wt                     
## 3                  186.904307271046  1 wt cyl                 
## 3                  189.17318360105   1 wt hp                  
## 3                  194.523487851372  1 wt vs                  
## 4                  184.755187612804  1 wt cyl am              
## 4                  185.177463011528  1 wt cyl hp              
## 4                  186.571791388542  1 wt hp am               
## 5                  186.392004692651  1 wt cyl hp am           
## 5                  189.618260351885  1 wt hp vs am            
## 5                  190.104285448931  1 wt cyl disp hp         
## 6                  191.874880930657  1 wt cyl disp hp am      
## 6                  192.868991967306  1 wt cyl hp vs am        
## 6                  194.381840779641  1 wt disp hp vs am       
## 7                  198.745196549042  1 wt cyl disp hp vs am   
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 5. Parameter Estimates for Response mpg under AIC                                        
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##   Variable         Estimate            Std. Error           t value             Pr(>|t|)       
## ———————————————————————————————————————————————————————————————————————————————————————————————
## (Intercept)  36.1465357519024     3.10478079459192    11.6422182895696   4.94480374933663e-12   
## wt           -2.60648070821658    0.919837490381642   -2.83363173981433  0.00860321812827099    
## cyl          -0.745157023930062   0.582787409987315   -1.27860865070212  0.211916611111083      
## hp           -0.0249510591437429  0.0136461447865208  -1.82843283096253  0.0785533736998695     
## am           1.47804770540896     1.44114927311401    1.02560347701888   0.314179886317532      
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 6. Parameter Estimates for Response drat under AIC                                         
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##   Variable         Estimate            Std. Error            t value              Pr(>|t|)       
## —————————————————————————————————————————————————————————————————————————————————————————————————
## (Intercept)  4.53925999228833     0.407323665632239    11.1441106306519    1.32299213312141e-11   
## wt           -0.093678528460361   0.120675694406779    -0.776283318035738  0.444329239934457      
## cyl          -0.1691236910122     0.0764572830822192   -2.21200236516816   0.0356145054513225     
## hp           0.00171645750563225  0.00179027058073661  0.958769877638278   0.346182118711362      
## am           0.377500876754036    0.189067841977936    1.99664243694118    0.056037276070909      
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 7. Parameter Estimates for Response mpg under AICc                                    
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##   Variable        Estimate          Std. Error           t value             Pr(>|t|)       
## ————————————————————————————————————————————————————————————————————————————————————————————
## (Intercept)  39.4179334351865   2.6414572997099    14.9227978962656   7.42499755293912e-15   
## wt           -3.12514220026708  0.910882701148664  -3.43089422636541  0.00188589438685631    
## cyl          -1.5102456624971   0.422279222208057  -3.57641480582487  0.00129160458914754    
## am           0.176493157719669  1.30445145498685   0.135300671439281  0.89334214792396       
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 8. Parameter Estimates for Response drat under AICc                                      
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##   Variable         Estimate           Std. Error           t value              Pr(>|t|)       
## ———————————————————————————————————————————————————————————————————————————————————————————————
## (Intercept)  4.31421082403332     0.332409660876704  12.9785963881282    2.29282220122696e-13   
## wt           -0.0579982631143607  0.114628470360106  -0.505967347659431  0.616840130742605      
## cyl          -0.116490969949067   0.053141004045333  -2.19211081991774   0.0368483162012922     
## am           0.467038681922974    0.164156454783472  2.84508265324694    0.00821005565960176    
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗

Visulization of the selection process using subset strategy under information criteron AIC and AICc.

    plot(exam3)

3.2 Logistic stepwise regression with remission

Example4: In this run, we employed remiss as response with the other 6 variables serving as predictors. The variable cell was enforced to be included in all models. The analysis involved the forward strategy for variable selection, with AIC and SL as the criteria parallelly, and the significance levels for entry (sle) and stay (sls) were both set to 0.05.

    data(remission)
    formula <- remiss ~ .
    exma4 <- stepwise(formula = formula,
                      data = remission,
                      type = "logit",
                      include= "cell",
                      strategy = "forward",
                      metric = c("AIC","SL"),
                      sle = 0.05,
                      sls = 0.05)
    exma4
## Table 1. Summary of Parameters            
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##            Parameter              Value   
## ——————————————————————————————————————————
## included variable               cell       
## strategy                        forward    
## metric                          AIC & SL   
## entry significance level (sle)  0.05       
## test method                     Rao        
## tolerance of multicollinearity  1e-07      
## multicollinearity variable      NULL       
## intercept                       1          
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 2. Type of Variables                    
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  Variable type  Variable name  Variable class 
## ——————————————————————————————————————————————
## Dependent      remiss         numeric          
## Independent    cell           numeric          
## Independent    smear          numeric          
## Independent    infil          numeric          
## Independent    li             numeric          
## Independent    blast          numeric          
## Independent    temp           numeric          
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 3. Selection Process under AIC                                                 
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  Step  EnteredEffect  RemovedEffect  NumberEffectIn  NumberParmsIn        AIC        
## —————————————————————————————————————————————————————————————————————————————————————
## 0     1                             1               1              36.3717650879199   
## 0     cell                          -1              2              35.7917917196118   
## 1     li                            3               3              30.3407188099083   
## 2     temp                          4               4              29.953368109419    
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 4. Selection Process under SL                                                     
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  Step  EnteredEffect  RemovedEffect  NumberEffectIn  NumberParmsIn          SL          
## ————————————————————————————————————————————————————————————————————————————————————————
## 0     1                             1               1              1                     
## 0     cell                          -1              2              0.169276579083175     
## 1     li                            3               3              0.00801481059473564   
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 5. Parameter Estimates for remiss under AIC                                        
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##   Variable        Estimate          Std. Error          z value            Pr(>|z|)      
## —————————————————————————————————————————————————————————————————————————————————————————
## (Intercept)  67.6339061281107   56.8875473471752  1.18890529267068   0.234476937196249    
## cell         9.65215222462213   7.75107586200402  1.24526612775618   0.213033942178284    
## li           3.86710032908392   1.77827772175707  2.17463238827675   0.0296576752212302   
## temp         -82.0737742795405  61.7123821323401  -1.32994014237752  0.183537993940985    
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 6. Parameter Estimates for remiss under SL                                         
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##   Variable        Estimate          Std. Error          z value            Pr(>|z|)      
## —————————————————————————————————————————————————————————————————————————————————————————
## (Intercept)  -9.58583007808603  6.2743262779057   -1.52778635561899  0.126565591026528    
## cell         6.29163359335162   6.15249803344084  1.0226144826304    0.306490159285688    
## li           2.87858063854095   1.25185701053452  2.299448430865     0.0214794885107115   
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗

Visulization of the selection process using forward strategy under information criteron AIC and SL.

    plot(exma4)

Example5: In this anslysis, remiss was retained as the response variable, while the other six variables served as predictors. The analysis utilized the subset strategy for variable selection, with AIC and SL as the criterion parallelly.

    data(remission)
    formula <- remiss ~ .
    exma5 <- stepwise(formula = formula,
                      data = remission,
                      type = "logit",
                      strategy = "subset",
                      metric = c("AIC","SL"),
                      best_n = 3)
    exma5
## Table 1. Summary of Parameters            
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##            Parameter              Value   
## ——————————————————————————————————————————
## included variable               NULL       
## strategy                        subset     
## metric                          AIC & SL   
## test method                     Rao        
## tolerance of multicollinearity  1e-07      
## multicollinearity variable      NULL       
## intercept                       1          
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 2. Type of Variables                    
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  Variable type  Variable name  Variable class 
## ——————————————————————————————————————————————
## Dependent      remiss         numeric          
## Independent    cell           numeric          
## Independent    smear          numeric          
## Independent    infil          numeric          
## Independent    li             numeric          
## Independent    blast          numeric          
## Independent    temp           numeric          
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 3. Selection Process under AIC                                    
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  NumberOfVariables        AIC                 VariablesInModel          
## ————————————————————————————————————————————————————————————————————————
## 2                  30.0729645050923  1  li                               
## 2                  34.8205019629019  1  blast                            
## 2                  35.7917917196118  1  cell                             
## 3                  30.3407188099083  1  cell li                          
## 3                  30.6478222686119  1  li temp                          
## 3                  31.4904839517614  1  infil li                         
## 4                  29.953368109419   1  cell li temp                     
## 4                  31.5343469686038  1  li blast temp                    
## 4                  31.7759437799494  1  infil li temp                    
## 5                  31.8579906429728  1  cell smear li temp               
## 5                  31.8691398459254  1  cell infil li temp               
## 5                  31.9325085686912  1  cell li blast temp               
## 6                  33.7550450527665  1  cell smear infil li temp         
## 6                  33.8571463530981  1  cell smear li blast temp         
## 6                  33.8686584978099  1  cell infil li blast temp         
## 7                  35.7506522854459  1  cell smear infil li blast temp   
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 4. Selection Process under SL                                     
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  NumberOfVariables         SL                 VariablesInModel          
## ————————————————————————————————————————————————————————————————————————
## 2                  7.93109912391465  1  li                               
## 2                  3.52581053761541  1  blast                            
## 2                  1.88933825259033  1  cell                             
## 3                  8.66108166784948  1  cell li                          
## 3                  8.36482911322912  1  li temp                          
## 3                  8.17463918794755  1  infil li                         
## 4                  9.25024541927856  1  cell li temp                     
## 4                  8.79127825261338  1  smear infil li                   
## 4                  8.68174276768291  1  cell li blast                    
## 5                  9.44759197671312  1  smear infil li temp              
## 5                  9.27906944643618  1  cell smear li temp               
## 5                  9.26147971975759  1  cell infil li temp               
## 6                  9.46088500719727  1  cell smear infil li temp         
## 6                  9.45015507221275  1  smear infil li blast temp        
## 6                  9.32952313436336  1  cell smear li blast temp         
## 7                  9.46088923922502  1  cell smear infil li blast temp   
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 5. Parameter Estimates for remiss under AIC                                        
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##   Variable        Estimate          Std. Error          z value            Pr(>|z|)      
## —————————————————————————————————————————————————————————————————————————————————————————
## (Intercept)  67.6339061281107   56.8875473471752  1.18890529267068   0.234476937196249    
## cell         9.65215222462213   7.75107586200402  1.24526612775618   0.213033942178284    
## li           3.86710032908392   1.77827772175707  2.17463238827675   0.0296576752212302   
## temp         -82.0737742795405  61.7123821323401  -1.32994014237752  0.183537993940985    
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 6. Parameter Estimates for remiss under SL                                          
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##   Variable        Estimate          Std. Error          z value             Pr(>|z|)      
## ——————————————————————————————————————————————————————————————————————————————————————————
## (Intercept)  58.0384871144701   71.2364334179606  0.814730389068539   0.415226654399395    
## cell         24.6615438508061   47.8376944382513  0.515525343359495   0.606185964565718    
## smear        19.2935745808349   57.9500115690838  0.332934783935884   0.739183512053845    
## infil        -19.6012612370258  61.6814798296488  -0.317781954829235  0.750650339683589    
## li           3.89596332799396   2.33711543506734  1.66699653322075    0.0955150942220478   
## blast        0.151092333239208  2.27857061152582  0.0663101386785774  0.947130911494031    
## temp         -87.4339023538899  67.5735358529564  -1.29390746318427   0.195697386304521    
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗

Visulization of the selection process using subset strategy under information criteron AIC and SL.

    plot(exma5)

3.3 Cox stepwise regression with lung

Example6: Cox stepwise regression used the forward method for variable selection with IC(1) and SL as the criteria for stop rules parallelly, including variable age in all models. The significance levels for enter (sle) was set to 0.05.

    lung <- survival::lung
    my.data <- na.omit(lung)
    my.data$status1 <- ifelse(my.data$status == 2,1,0)
    formula  =  Surv(time, status1) ~ . - status 
    
    exma6 <- stepwise(formula = formula,
                      data = my.data,
                      type = "cox",
                      include = "age",
                      strategy = "forward",
                      metric = c("IC(1)","SL"),
                      sle = 0.05)
    exma6
## Table 1. Summary of Parameters              
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##            Parameter               Value    
## ————————————————————————————————————————————
## included variable               age          
## strategy                        forward      
## metric                          IC(1) & SL   
## entry significance level (sle)  0.05         
## test method                     efron        
## tolerance of multicollinearity  1e-07        
## multicollinearity variable      NULL         
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 2. Type of Variables                          
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  Variable type     Variable name     Variable class 
## ————————————————————————————————————————————————————
## Dependent      Surv(time, status1)  nmatrix.2        
## Independent    inst                 numeric          
## Independent    age                  numeric          
## Independent    sex                  numeric          
## Independent    ph.ecog              numeric          
## Independent    ph.karno             numeric          
## Independent    pat.karno            numeric          
## Independent    meal.cal             numeric          
## Independent    wt.loss              numeric          
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 3. Selection Process under IC(1)                                               
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  Step  EnteredEffect  RemovedEffect  NumberEffectIn  NumberParmsIn       IC(1)       
## —————————————————————————————————————————————————————————————————————————————————————
## 0     age                           1               1              1013.71004248687   
## 1     ph.ecog                       2               2              1005.03577133648   
## 2     sex                           3               3              999.220449574499   
## 3     inst                          4               4              996.745082496922   
## 4     ph.karno                      5               5              993.164700650656   
## 5     wt.loss                       6               6              990.378814285337   
## 6     pat.karno                     7               7              989.5365169151     
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 4. Selection Process under SL                                                     
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  Step  EnteredEffect  RemovedEffect  NumberEffectIn  NumberParmsIn          SL          
## ————————————————————————————————————————————————————————————————————————————————————————
## 0     age                           1               1              0.0605025541359114    
## 1     ph.ecog                       2               2              0.00186866385928123   
## 2     sex                           3               3              0.00903790177522826   
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 5. Parameter Estimates for Surv(time, status1) under IC(1)                                                 
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  Variable          coef              exp(coef)           se(coef)                z                Pr(>|z|)       
## —————————————————————————————————————————————————————————————————————————————————————————————————————————————————
## age        0.0127911717927875   1.01287332875159   0.0117657197510269   1.08715591255444   0.276967911173407      
## ph.ecog    0.907317172186787    2.47766645634186   0.238503963744317    3.80420164907388   0.000142262259259764   
## sex        -0.566868101335099   0.56729938352366   0.200032540541155    -2.83387942682491  0.00459866794108441    
## inst       -0.0303746283354971  0.970082045244345  0.0131043742343092   -2.3178999464142   0.0204547593691531     
## ph.karno   0.026580081421336    1.02693648250202   0.0116170285677177   2.28802755079718   0.0221359167402799     
## wt.loss    -0.0167121591832758  0.983426714247836  0.00791193897857379  -2.11227099052884  0.0346632125632795     
## pat.karno  -0.0108962907298638  0.98916285881416   0.00799900477152     -1.36220580448451  0.173132944510343      
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 6. Parameter Estimates for Surv(time, status1) under SL                                                 
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  Variable         coef              exp(coef)          se(coef)               z                Pr(>|z|)       
## ——————————————————————————————————————————————————————————————————————————————————————————————————————————————
## age       0.00803434264043171  1.00806670458218   0.011086104693833  0.724721880436602  0.46862266905784       
## ph.ecog   0.455257333389347    1.5765790372648    0.136856945048725  3.32651977016775   0.000879377814698571   
## sex       -0.502179683704786   0.605210054490898  0.197336202068922  -2.5447924832839   0.0109342697305065     
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗

Visulization of the selection process using forward strategy under information criteron IC(1) and SL.

    plot(exma6)

Example7: Cox stepwise regression used the backward method for variable selection with SL and AIC as the criterion. The significance levels for staying (sls) was set to 0.05.

    formula = Surv(time, status1) ~ . - status 
    exma7 <- stepwise(formula = formula,
                      data = my.data,
                      type = "cox",
                      strategy = "backward",
                      metric = c("SL","AIC"),
                      sls = 0.05)
    exma7
## Table 1. Summary of Parameters            
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##            Parameter              Value   
## ——————————————————————————————————————————
## included variable               NULL       
## strategy                        backward   
## metric                          SL & AIC   
## stay significance level (sls)   0.05       
## test method                     efron      
## tolerance of multicollinearity  1e-07      
## multicollinearity variable      NULL       
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 2. Type of Variables                          
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  Variable type     Variable name     Variable class 
## ————————————————————————————————————————————————————
## Dependent      Surv(time, status1)  nmatrix.2        
## Independent    inst                 numeric          
## Independent    age                  numeric          
## Independent    sex                  numeric          
## Independent    ph.ecog              numeric          
## Independent    ph.karno             numeric          
## Independent    pat.karno            numeric          
## Independent    meal.cal             numeric          
## Independent    wt.loss              numeric          
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 3. Selection Process under SL                                                    
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  Step  EnteredEffect  RemovedEffect  NumberEffectIn  NumberParmsIn          SL         
## ———————————————————————————————————————————————————————————————————————————————————————
## 0                                   8               8              1                    
## 1                    meal.cal       7               7              0.992244442233114    
## 2                    age            6               6              0.276967911173407    
## 3                    pat.karno      5               5              0.150201287416114    
## 4                    ph.karno       4               4              0.0554707154521576   
## 5                    wt.loss        3               3              0.0652481881858785   
## 6                    inst           2               2              0.0670860630827791   
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 4. Selection Process under AIC                                                 
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  Step  EnteredEffect  RemovedEffect  NumberEffectIn  NumberParmsIn        AIC        
## —————————————————————————————————————————————————————————————————————————————————————
## 0                                   8               8              998.536422466941   
## 1                    meal.cal       7               7              996.5365169151     
## 2                    age            6               6              995.742173541071   
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 5. Parameter Estimates for Surv(time, status1) under SL                                                
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  Variable         coef             exp(coef)          se(coef)               z                Pr(>|z|)       
## —————————————————————————————————————————————————————————————————————————————————————————————————————————————
## sex       -0.510099064468472  0.600436093983396  0.196899845516193  -2.59065243617229  0.00957941855627087    
## ph.ecog   0.48251852871466    1.62014966165472   0.132315991621882  3.6467136194206    0.000265615670889065   
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 6. Parameter Estimates for Surv(time, status1) under AIC                                                   
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  Variable          coef              exp(coef)           se(coef)                z                Pr(>|z|)       
## —————————————————————————————————————————————————————————————————————————————————————————————————————————————————
## inst       -0.0291538752858262  0.971266998980296  0.0129546401503024   -2.25045813296061  0.0244198783334591     
## sex        -0.562968129724542   0.569516154877045  0.199295953293519    -2.82478454991715  0.00473124175773548    
## ph.ecog    0.901507779010255    2.46331444633504   0.240838552326673    3.74320377822007   0.000181688764023633   
## ph.karno   0.0238044694133571   1.02409005738304   0.0113996516289851   2.08817516430336   0.0367820367652906     
## pat.karno  -0.0115478833807012  0.988518537505187  0.00802593552960615  -1.43882084999353  0.150201287416114      
## wt.loss    -0.0168103912518805  0.983330114952026  0.00781085562695218  -2.15218307119574  0.0313829384207112     
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗

Visulization of the selection process using backward strategy under information criteron AIC and SL.

    plot(exma7)

3.4 Poisson stepwise regression with CreditCard

Example8: In this exmaples, We designated reports as the response variable, with the remaining variables serving as predictors. The analysis employed the forward method for variable selection, utilizing SL and IC(3/2) as the criterion for stop rules, and the significance levels for entry (sle) was set to be 0.05.

    data(CreditCard, package = 'AER')
    formula  = reports ~ .
    
    exma8 <- stepwise(formula = formula,
                      data = CreditCard,
                      type = "poisson",
                      strategy = "forward",
                      metric = c("SL","IC(3/2)"),
                      sle=0.05)
    exma8
## Table 1. Summary of Parameters                
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##            Parameter                Value     
## ——————————————————————————————————————————————
## included variable               NULL           
## strategy                        forward        
## metric                          SL & IC(3/2)   
## entry significance level (sle)  0.05           
## test method                     Rao            
## tolerance of multicollinearity  1e-07          
## multicollinearity variable      NULL           
## intercept                       1              
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 2. Type of Variables                    
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  Variable type  Variable name  Variable class 
## ——————————————————————————————————————————————
## Dependent      reports        numeric          
## Independent    card           factor           
## Independent    age            numeric          
## Independent    income         numeric          
## Independent    share          numeric          
## Independent    expenditure    numeric          
## Independent    owner          factor           
## Independent    selfemp        factor           
## Independent    dependents     numeric          
## Independent    months         numeric          
## Independent    majorcards     numeric          
## Independent    active         numeric          
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 3. Selection Process under SL                                                      
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  Step  EnteredEffect  RemovedEffect  NumberEffectIn  NumberParmsIn           SL          
## —————————————————————————————————————————————————————————————————————————————————————————
## 0     1                             1               1              1                      
## 1     card                          2               2              8.5877221503339e-235   
## 2     active                        3               3              7.53645358139937e-61   
## 3     expenditure                   4               4              0.00016672060857812    
## 4     months                        5               5              0.00149658752249917    
## 5     owner                         6               6              0.000289704544697657   
## 6     majorcards                    7               7              0.00853660247624029    
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 4. Selection Process under IC(3/2)                                             
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  Step  EnteredEffect  RemovedEffect  NumberEffectIn  NumberParmsIn      IC(3/2)      
## —————————————————————————————————————————————————————————————————————————————————————
## 0     1                             1               1              2998.46727451496   
## 1     card                          2               2              2161.54380348632   
## 2     active                        3               3              1970.86790229148   
## 3     expenditure                   4               4              1962.20751098534   
## 4     months                        5               5              1954.79845463846   
## 5     owner                         6               6              1942.91316602911   
## 6     majorcards                    7               7              1937.16269545213   
## 7     income                        8               8              1937.02611660997   
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 5. Parameter Estimates for reports under SL                                                  
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##   Variable          Estimate             Std. Error            z value             Pr(>|z|)        
## ———————————————————————————————————————————————————————————————————————————————————————————————————
## (Intercept)  -0.298643659038297    0.109685399601467     -2.7227293707585   0.00647450714191624     
## cardyes      -2.70352225795467     0.117195939295856     -23.0683953232351  9.61653770781882e-118   
## active       0.0654296707660895    0.00399754905523789   16.367446618412    3.26632926223479e-60    
## expenditure  0.000672431213470284  0.000177638845762774  3.78538382515879   0.00015347151873607     
## months       0.00212461501050368   0.000530320086460442  4.00628802254911   6.16804294228691e-05    
## owneryes     -0.343769864333074    0.0926480304376423    -3.71049295607479  0.000206856052610907    
## majorcards   0.274039347897117     0.104512901787067     2.62206237901079   0.00873994324369934     
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 6. Parameter Estimates for reports under IC(3/2)                                             
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##   Variable          Estimate             Std. Error            z value             Pr(>|z|)        
## ———————————————————————————————————————————————————————————————————————————————————————————————————
## (Intercept)  -0.370064654071273    0.122569709425332     -3.01921784596146  0.00253428230748237     
## cardyes      -2.69192183928203     0.117368471922898     -22.935646985763   2.04939317764651e-116   
## active       0.064733432332392     0.00402555478259611   16.0806238713375   3.48848117936459e-58    
## expenditure  0.000598437222203223  0.000185715652467924  3.22233055884496   0.00127152347189399     
## months       0.00202983041537343   0.000534807209066601  3.79544325686278   0.000147379901803219    
## owneryes     -0.368861130713364    0.0948758378946128    -3.88783001972632  0.000101144415795062    
## majorcards   0.257131033787657     0.105294602110372     2.44201534204124   0.0146055259166052      
## income       0.0328317155222303    0.0253062467170453    1.29737593604176   0.194501868167294       
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗

Visulization of the selection process using forward strategy under information criteron IC(3/2) and SL.

    plot(exma8)

Example9: reports variable was maintained as the response variable, and the remaining variables were set as predictors. The variables card and months were enforced to be included in all models. Poisson stepwise regression was performed using the bidirection method for variable selection with IC(3/2) and AIC as the criterion for stop rules parrallelly.

    formula = reports ~ .
    exma9 <- stepwise(formula = formula,
                      data = CreditCard,
                      type = "poisson",
                      include=c("card","months"),
                      strategy = "bidirection",
                      metric = c("IC(3/2)","AIC")
                      )
    exma9
## Table 1. Summary of Parameters                 
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##            Parameter                 Value     
## ———————————————————————————————————————————————
## included variable               card months     
## strategy                        bidirection     
## metric                          IC(3/2) & AIC   
## tolerance of multicollinearity  1e-07           
## multicollinearity variable      NULL            
## intercept                       1               
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 2. Type of Variables                    
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  Variable type  Variable name  Variable class 
## ——————————————————————————————————————————————
## Dependent      reports        numeric          
## Independent    card           factor           
## Independent    age            numeric          
## Independent    income         numeric          
## Independent    share          numeric          
## Independent    expenditure    numeric          
## Independent    owner          factor           
## Independent    selfemp        factor           
## Independent    dependents     numeric          
## Independent    months         numeric          
## Independent    majorcards     numeric          
## Independent    active         numeric          
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 3. Selection Process under IC(3/2)                                             
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  Step  EnteredEffect  RemovedEffect  NumberEffectIn  NumberParmsIn      IC(3/2)      
## —————————————————————————————————————————————————————————————————————————————————————
## 0     1                             1               1              2998.46727451496   
## 0     card months                   -2              3              2153.23072693751   
## 1     active                        4               4              1963.56167073775   
## 2     owner                         5               5              1952.16998343778   
## 3     expenditure                   6               6              1942.91316602911   
## 4     majorcards                    7               7              1937.16269545213   
## 5     income                        8               8              1937.02611660997   
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 4. Selection Process under AIC                                                 
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##  Step  EnteredEffect  RemovedEffect  NumberEffectIn  NumberParmsIn        AIC        
## —————————————————————————————————————————————————————————————————————————————————————
## 0     1                             1               1              2998.96727451496   
## 0     card months                   -2              3              2154.73072693751   
## 1     active                        4               4              1965.56167073775   
## 2     owner                         5               5              1954.66998343778   
## 3     expenditure                   6               6              1945.91316602911   
## 4     majorcards                    7               7              1940.66269545213   
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 5. Parameter Estimates for reports under IC(3/2)                                             
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##   Variable          Estimate             Std. Error            z value             Pr(>|z|)        
## ———————————————————————————————————————————————————————————————————————————————————————————————————
## (Intercept)  -0.370064654071274    0.122569709425332     -3.01921784596147  0.00253428230748225     
## cardyes      -2.69192183928203     0.117368471922898     -22.935646985763   2.04939317764651e-116   
## months       0.00202983041537344   0.000534807209066601  3.79544325686279   0.000147379901803215    
## active       0.064733432332392     0.00402555478259611   16.0806238713375   3.48848117936579e-58    
## owneryes     -0.368861130713364    0.0948758378946128    -3.88783001972632  0.000101144415795061    
## expenditure  0.000598437222203224  0.000185715652467925  3.22233055884496   0.00127152347189399     
## majorcards   0.257131033787657     0.105294602110372     2.44201534204124   0.0146055259166053      
## income       0.0328317155222304    0.0253062467170453    1.29737593604176   0.194501868167292       
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
## 
## Table 6. Parameter Estimates for reports under AIC                                                 
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
##   Variable          Estimate             Std. Error            z value             Pr(>|z|)        
## ———————————————————————————————————————————————————————————————————————————————————————————————————
## (Intercept)  -0.298643659038298    0.109685399601467     -2.72272937075851  0.00647450714191609     
## cardyes      -2.70352225795467     0.117195939295856     -23.0683953232351  9.61653770781724e-118   
## months       0.00212461501050368   0.000530320086460441  4.00628802254911   6.16804294228673e-05    
## active       0.0654296707660895    0.0039975490552379    16.367446618412    3.26632926223498e-60    
## owneryes     -0.343769864333074    0.0926480304376423    -3.71049295607478  0.00020685605261091     
## expenditure  0.000672431213470282  0.000177638845762774  3.78538382515879   0.000153471518736071    
## majorcards   0.274039347897117     0.104512901787067     2.62206237901079   0.0087399432436993      
## ‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗

Visulization of the selection process using bidirection strategy under information criteron IC(3/2) and AIC.

    plot(exma9)

4 Session Info

## R version 4.1.3 (2022-03-10)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS Big Sur/Monterey 10.16
## 
## Matrix products: default
## BLAS:   /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] StepReg_1.5.0    BiocStyle_2.22.0
## 
## loaded via a namespace (and not attached):
##  [1] zip_2.3.1           Rcpp_1.0.12         highr_0.10         
##  [4] bslib_0.4.2         compiler_4.1.3      pillar_1.9.0       
##  [7] BiocManager_1.30.20 jquerylib_0.1.4     tools_4.1.3        
## [10] digest_0.6.31       lattice_0.21-8      jsonlite_1.8.4     
## [13] evaluate_0.20       lifecycle_1.0.4     tibble_3.2.1       
## [16] gtable_0.3.4        pkgconfig_2.0.3     rlang_1.1.3        
## [19] openxlsx_4.2.5.2    Matrix_1.5-3        cli_3.6.2          
## [22] rstudioapi_0.14     ggrepel_0.9.5       yaml_2.3.7         
## [25] xfun_0.38           fastmap_1.1.1       withr_3.0.0        
## [28] stringr_1.5.1       dplyr_1.1.4         knitr_1.42         
## [31] generics_0.1.3      sass_0.4.5          vctrs_0.6.5        
## [34] tidyselect_1.2.0    grid_4.1.3          glue_1.7.0         
## [37] R6_2.5.1            fansi_1.0.6         survival_3.5-5     
## [40] rmarkdown_2.21      bookdown_0.33       farver_2.1.1       
## [43] purrr_1.0.2         ggplot2_3.4.4       magrittr_2.0.3     
## [46] splines_4.1.3       scales_1.3.0        htmltools_0.5.5    
## [49] colorspace_2.1-0    labeling_0.4.3      utf8_1.2.4         
## [52] stringi_1.8.3       munsell_0.5.0       cachem_1.0.7